English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Photochemistry and Photobiology B: Biology 2017-Oct

Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bello Aminu Bello
Shahid Ali Khan
Jalaluddin Awllia Khan
Fareeduddin Quadri Syed
Yasir Anwar
Sher Bahadar Khan

Keywords

Abstract

The study concentrate on the biosynthesis of silver nanoparticles (AgNps) from the leaves extract of Guiera senegalensis with focus on its; antiproliferation effect on prostate (PC3), breast (MCF7) and liver (HepG2) cancer cell lines, antibacterial effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and the degradation on 4-nitrophenol (4-NP) and congo red dye (CR). The synthesized AgNps were characterized by FTIR, TEM, FESEM, XRD and EDX analysis. The EDS spectrum revealed that the synthesized nanoparticles (Nps) were composed of 55.45% Ag atoms of spherical shape with approximately 50nm size, identified from TEM and FESEM data. The antiproliferation effect of the AgNps varies with cell lines in a concentration dependent manner. The result showed that the AgNps were more effective on PC3 (IC50 23.48μg/mL) than MCF7 (29.25μg/mL) and HepG2 (33.25μg/mL) by the virtue of their IC50 values. The AgNps were highly effective against E. coli and S. aureus by killing 99% colonies. The AgNps also shows a good catalytic reduction of the toxic organic pollutants in which only 3mg of the AgNps degraded 95% of both CR dye and 4-NP in 22 and 36min respectively. Therefore, the green synthesis of AgNps may have potential applications in pharmacology and industries for the treatment of cancers, bacterial infections and in degrading toxic organic pollutants in water.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge