English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1991-Jul

Apical cell surface expression of rat dipeptidyl peptidase IV in transfected Madin-Darby canine kidney cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S H Low
S H Wong
B L Tang
V N Subramaniam
W J Hong

Keywords

Abstract

Dipeptidyl peptidase IV (DPPIV) is a type II membrane glycoprotein that is predominantly localized to the apical plasma membrane in various epithelial cells. In order to understand in more detail the biogenesis and sorting of DPPIV, the cDNA for rat DPPIV was inserted into a mammalian plasmid expression vector so that DPPIV expression was driven by a control region composed of the SV40 early promoter region fused to the enhancer of the Rous sarcoma virus. Madin-Darby canine kidney cells transfected with this construct were found to express the DPPIV protein. In these transfected cells, the majority of DPPIV was present on the apial cell surface. This observation suggests that the information for apical surface localization is inherent in the DPPIV molecule itself and that this sorting information is decipherable in the epithelial cells of a different species. DPPIV is transported efficiently from the endoplasmic reticulum to the Golgi apparatus as assessed by pulse-chase experiments. Furthermore, evidence is presented which suggests that the majority of DPPIV is sorted intracellularly to the apical cell surface. The same protein has, however, been reported to be sorted by an indirect pathway through transcytosis from the basolateral to the apical cell surface in hepatocytes (Bartles, J.R., Feracci, H., M., Stinger, B., and Hubbard, A.L. (1987) J. Cell Biol. 105, 1241-1251). This study suggests that the same protein can take two different pathways in different cell types for its correct apical cell surface localization.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge