English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Stroke 1998-Dec

Apoptosis in a neonatal rat model of cerebral hypoxia-ischemia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M R Pulera
L M Adams
H Liu
D G Santos
R N Nishimura
F Yang
G M Cole
C G Wasterlain

Keywords

Abstract

OBJECTIVE

The mechanisms of excitotoxic cell death in cerebral ischemia are poorly understood. In addition to necrosis, apoptotic cell death may occur. The purpose of this study was to determine whether an established model of cerebral hypoxia-ischemia in the neonatal rat demonstrates any features of apoptosis.

METHODS

Seven-day-old neonatal rats underwent bilateral, permanent carotid ligation followed by 1 hour of hypoxia, and their brains were examined 1, 3, and 4 days after hypoxia-ischemia. The severity of ischemic damage was assessed in the dentate gyrus and frontotemporal cortex by light microscopy. Immunocytochemistry was performed to detect the cleavage of actin by caspases, a family of enzymes activated in apoptosis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) reactivity was examined in the cortical infarction bed and dentate gyrus. Neonatal rat brain DNA was run on agarose gel electrophoresis to detect DNA fragmentation. Ethidium bromide-staining and electron microscopy were used to determine whether apoptotic bodies, 1 of the hallmarks of apoptosis, were present.

RESULTS

The frontotemporal cortex displayed evidence of infarction, and in most rats the dentate gyrus showed selective, delayed neuronal death. Immunocytochemistry demonstrated caspase-related cleavage of actin. TUNEL and DNA electrophoresis provided evidence of DNA fragmentation. Ethidium bromide-staining and electron microscopy confirmed the presence of chromatin condensation and apoptotic bodies.

CONCLUSIONS

Features of apoptosis are present in the described model of cerebral hypoxia-ischemia. Apoptosis may represent a mode of ischemic cell death that could be the target of novel treatments that could potentially expand the therapeutic window for stroke.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge