English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carcinogenesis 2002-Mar

Apoptosis of squamous cells at different stages of carcinogenesis following 4-HPR treatment.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Silvia Bruno
Claudya Tenca
Daniele Saverino
Ermanno Ciccone
Carlo E Grossi

Keywords

Abstract

Squamous cell carcinoma (SCC) is the end product of a multistep process characterized by a progression from normal epithelial cells through metaplastic or dysplastic intraepithelial changes that evolve into invasive cancer. Since retinamides have shown promising in vivo anti-tumoral activity, we studied effects and effector mechanisms of the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) on squamous cells at progressing stages of tumorigenesis. To this end, an in vitro model of squamous carcinogenesis consisting of normal human keratinocytes, human papilloma virus (HPV)-immortalized keratinocytes (UP) and tumorigenic HPV-immortalized/v-Ha-ras transfected keratinocytes (UPR) was used. 4-HPR treatment affected cell growth at doses higher than 1.5 microM. Flow cytometric measurements of DNA content and annexin V revealed that cell growth decrease was mainly due to apoptosis at 4-HPR concentrations of or below 15 microM, and necrosis at higher concentrations. The effects were similar in the three cell types of the in vitro model, as well as in three SCC cell lines, suggesting that sensitivity to 4-HPR is independent of the degree of squamous cell tumorigenesis in the in vitro model. We further investigated whether mitochondrial damage was involved in the course of 4-HPR-induced apoptosis. Treatment of squamous cells with the antioxidant L-ascorbic acid inhibited apoptosis, indicating that 4-HPR increases production of free radicals. Measures of mitochondrial membrane potentials showed that 4-HPR induced membrane permeability transition (MPT), and that MPT-inhibitors were able to reduce apoptosis. This indicates that MPT is involved in apoptosis signalling by 4-HPR. Finally, we studied the role of caspases. We found that caspases 8, 9 and 3 participate in 4-HPR-mediated apoptosis of squamous cells, and that MPT is an upstream event that regulates caspase activity. Caspase 8 was activated independently of the Fas-Fas ligand pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge