English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemical Analysis

Application of high-speed countercurrent chromatography-evaporative light scattering detection for the separation of seven steroidal saponins from Dioscorea villosa.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kee Dong Yoon
Young-Won Chin
Min Hye Yang
Janggyoo Choi
Jinwoong Kim

Keywords

Abstract

BACKGROUND

Steroidal saponins in Dioscorea species are chemically characterised as spirostanol and furostanol saponins, and have been used as standard marker compounds due to their chemotaxonomical significance and their important biological activities.

OBJECTIVE

To design a simple, rapid and efficient method for the separation of steroidal saponins with a high degree of purity using high-speed countercurrent chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD).

METHODS

In the first step, reversed-phase mode HSCCC (flow rate: 1.5 mL/min; revolution speed: 800 rpm) using n-hexane:n-butanol:water [3:7:10 (v/v/v)] was employed to separate furostanol saponins from n-butanol soluble extracts of Dioscorea villosa. After the first HSCCC run, spirostanol saponins retained in the stationary phase were subjected to the second HSCCC (normal-phase mode; flow rate: 2.0 mL/min; revolution speed: 800 rpm). A two-phase solvent system composed of chloroform:methanol:isopropanol:water [10:6:1:4 (v/v/v/v)] was employed in the second HSCCC. The structures of isolates were elucidated by (1) H-NMR, (13) C-NMR, ESI-MS and HPLC analysis.

RESULTS

Three furostanol saponins, parvifloside (27.3 mg), methyl protodeltonin (67.1 mg) and trigofoenoside A-1 (18.5 mg) were isolated from the n-butanol soluble extract of D. villosa by the first HSCCC run. Subsquent normal-phase HSCCC of the spirostanol-rich extract led to the separation of four spirostanol saponins: zingiberensis saponin I (15.2 mg), deltonin (31.5 mg), dioscin (7.7 mg) and prosapogenin A of dioscin (3.4 mg).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge