English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Developmental Neuroscience 1998-Apr

Arachidonate transport through the blood-retina and blood-brain barrier of the rat after reperfusion of varying duration following complete cerebral ischemia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Strosznajder
M Chalimoniuk
R P Strosznajder
M Walski
G Lupo
C D Anfuso
V Albanese
M Alberghina

Keywords

Abstract

The permeability-surface area product (PS) of [1-14C]arachidonate at the blood-retina and blood-brain barrier was determined by short carotid perfusion in young Wistar rats 1 or 6 h after recovery period following complete cerebral ischemia induced by temporary cardiac arrest. For the retina and structures of visual system, hypothalamus and olfactory bulb there was no significant difference over sham-operated rats among mean PSs. For cortex, hippocampus and striatum, significant increases were found at both time intervals of recovery after cardiac arrest. The ischemia-reperfusion model was characterized by a significant increase in tissue conjugated diene in the hippocampus and microsomal lysophosphatidylcholine acyltransferase activity in the cortex. Consistent with these findings, we also show ultrastructural evidence mainly represented by partial opening of interendothelial junctions and mild signs of tissue edema in surrounding neuropil, suggesting barrier leakiness predominantly in the cortex, hippocampus and striatum but almost absent in the retina microvessels. Our results indicate that ischemia-reperfusion does affect influex through blood-brain barrier into regional structures of rat central nervous system of arachidonate, a metabolic substrate and lipid mediator rapidly incorporated into microcapillary and brain lipids. The data also suggested that: (i) reactive oxyradicals were moderately generated during the early phase of ischemic-reperfusion process in the rat; (ii) after reperfusion, in vitro susceptibility of different brain regions to iron-induced peroxidation was highest in the hippocampus and lowest in the cortex and striatum; (iii) membrane phospholipid repair mechanisms were activated at the same time.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge