English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Immunopharmacology 2019-Jul

Aspernolide F, as a new cardioprotective butyrolactone against doxorubicin-induced cardiotoxicity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dina El-Agamy
Sabrin Ibrahim
Nishat Ahmed
Saad Khoshhal
Hany Abo-Haded
Mohamed Elkablawy
Naif Aljuhani
Gamal Mohamed

Keywords

Abstract

Endophytic fungi have known as a promising source of secondary metabolites. γ-Butyrolactones are a class of metabolites reported from Aspergillus genus, which attracted much attention for their bioactivities. This study aimed to assess the potential cardioprotective effects of aspernolide F (AF) separated from the endophytic fungus A. terreus against doxorubicin (DOX)-induced cardiotoxic effects in rats. Animals were treated with two different doses of AF for 10 days prior to DOX injection. Electrocardiographic (ECG), biochemical, histopathological and immunohistochemical analyses were performed. Results have shown that AF effectively protected against DOX-induced cardiac damage as AF counteracted DOX-induced ECG abnormalities and attenuated serum markers of cardiotoxicity (creatine kinase-MB, lactate dehydrogenase, troponin I, and troponin T). Histopathological examination of cardiac tissue revealed a remarkable improvement in DOX-induced lesions. In addition, AF ameliorated DOX-induced oxidative damage and increased the levels of antioxidants in cardiac tissues. AF treatment inhibited the activation of nuclear factor-κB (NF-κB) and decreased the immuno-expression of NF-κB in cardiac tissue. Furthermore, AF caused a marked lowering in the level of inflammatory cytokines (nitric oxide, tumor necrosis factor-α, and interleukin-6) in the cardiac tissue. Collectively, this study demonstrates the cardioprotective activity of AF against DOX-induced cardiac damage which may be due to its antioxidant and anti-inflammatory activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge