English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Organic and Biomolecular Chemistry 2013-Feb

Assessment of a putative proton relay in Arabidopsis cinnamyl alcohol dehydrogenase catalysis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Choonseok Lee
Diana L Bedgar
Laurence B Davin
Norman G Lewis

Keywords

Abstract

Extended proton relay systems have been proposed for various alcohol dehydrogenases, including the Arabidopsis thaliana cinnamyl alcohol dehydrogenases (AtCADs). Following a previous structural biology investigation of AtCAD5, the potential roles of three amino acid residues in a putative proton relay system, namely Thr49, His52 and Asp57, in AtCAD5, were investigated herein. Using site-directed mutagenesis, kinetic and isothermal titration calorimetry (ITC) analyses, it was established that the Thr49 residue was essential for overall catalytic conversion, whereas His52 and Asp57 residues were not. Mutation of the Thr49 residue to Ala resulted in near abolition of catalysis, with thermodynamic data indicating a negative enthalpic change (ΔH), as well as a significant decrease in binding affinity with NADPH, in contrast to wild type AtCAD5. Mutation of His52 and Asp57 residues by Ala did not significantly change either catalytic efficiency or thermodynamic parameters. Therefore, only the Thr49 residue is demonstrably essential for catalytic function. ITC analyses also suggested that for AtCAD5 catalysis, NADPH was bound first followed by p-coumaryl aldehyde.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge