English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2017

Astragaloside Alleviates Hepatic Fibrosis Function via PAR2 Signaling Pathway in Diabetic Rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zhenchang Wang
Quanqiang Li
Mingpeng Xiang
Fengying Zhang
Dongyu Wei
Zhixi Wen
Ying Zhou

Keywords

Abstract

OBJECTIVE

Astragaloside (AGS) extracted from radix astragalin (Huangqi) has been considered to be beneficial to liver diseases. In this study, we examined the role played by AGS in alleviating hepatic fibrosis function via protease-activated receptor-2 (PAR2) mechanisms. We hypothesized that AGS affects PAR2 signaling pathway thereby improving hepatic function in rats with hepatic fibrosis induced by carbon tetrachloride (CCl4). We further hypothesized that AGS attenuates impaired hepatic function evoked by CCl4 to a greater degree in diabetic animals.

METHODS

ELISA and Western Blot analysis were used to examine PAR2 signaling pathway in diabetic CCl4-rats and non-diabetic CCl4-rats.

RESULTS

AGS inhibited the protein expression of PAR2 and its downstream pathway PKA and PKCɛ in CCl4-rats. Notably, the effects of AGS were greater in CCl4-rats with diabetes. AGS also significantly attenuated the CCl4-induced upregulations of pro-inflammatory cytokines, namely interleukin-1β, interleukin-6 and tumor necrosis factor-α accompanied with decreases of collagenic parameters such as hexadecenoic acid, laminin and hydroxyproline. Additionally, AGS improved the CCl4-induced exaggerations of liver index and functions including alanine aminotransferase, aspartate aminotransferase. Moreover, TGF-β1, a marker of hepatic fibrosis, was increased in CCl4-rats and AGS inhibited increases in TGF-β1 induced by CCl4.

CONCLUSIONS

AGS alleviates hepatic fibrosis by inhibiting PAR2 signaling expression and its effects are largely enhanced in diabetic animals. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of hepatic fibrosis; and results of our study are likely to shed light on strategies for application of AGS because it has potentially greater therapeutic effectiveness for hepatic fibrosis in diabetes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge