English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cellular Physiology and Biochemistry 2018

Astragaloside IV Protects Rat Cardiomyocytes from Hypoxia-Induced Injury by Down-Regulation of miR-23a and miR-92a.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Licheng Gong
Hong Chang
Jingze Zhang
Gongliang Guo
Jingwei Shi
Haiming Xu

Keywords

Abstract

OBJECTIVE

Astragaloside IV (AS-IV), a traditional Chinese medicine isolated from Astragalus membranaceus, has been shown to exert cardioprotective effect previously. This study aimed to reveal the effects of AS-IV on hypoxia-injured cardiomyocyte.

METHODS

H9c2 cells were treated with various doses of AS-IV for 24 h upon hypoxia. CCK-8 assay, flow cytometry/Western blot, and qRT-PCR were respectively conducted to measure the changes in cell viability, apoptosis, and the expression of miR-23a and miR-92a. Sprague-Dawley rats were received coronary ligation, and were administrated by various doses of AS-IV for 14 days. The infarct volume and outcome of rats followed by ligation were tested by ultrasound, arteriopuncture and nitrotetrazolium blue chloride (NBT) staining.

RESULTS

We found that 10 μg/ml of AS-IV exerted myocardioprotective effects against hypoxia-induced cell damage, as AS-IV significantly increased H9c2 cells viability and decreased apoptosis. Interestingly, the myocardioprotective effects of AS-IV were alleviated by miR-23a and/or miR-92a overexpression. Knockdown of miR-23a and miR-92a activated PI3K/AKT and MAPK/ ERK signaling pathways. Bcl-2 was a target gene for miR-23a, and BCL2L2 was a target gene for miR-92a. In the animal model of myocardial infarction (MI), AS-IV significantly reduced the infarct volume, ejection fraction (EF), shortening fraction (FS) and LV systolic pressure (LVSP), and significantly increased left ventricular end-diastolic internal diameter (LVEDd). And also, the elevated expression of miR-23a and miR-92a in MI rat was reduced by AS-IV.

CONCLUSIONS

AS-IV protected cardiomyocytes against hypoxia-induced injury possibly via down-regulation of miR-23a and miR-92a, and via activation of PI3K/AKT and MAPK/ERK signaling pathways.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge