English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Rapid Communications in Mass Spectrometry 2012-Aug

Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Magdalena Kania
Karolina Skorupinska-Tudek
Ewa Swiezewska
Witold Danikiewicz

Keywords

Abstract

BACKGROUND

The aim of this study was to determine whether Atmospheric Pressure Photoionization (APPI) was better suited for the mass spectrometric (MS) analysis of polyisoprenoid alcohols than the commonly used Electrospray Ionization (ESI) method. The APPI method should make possible the use of non-polar solvents without any of the additives required by ESI, together with improved detection limits.

METHODS

The liquid chromatography (LC)/APPI-MS and LC/ESI-MS spectra of polyisoprenoid alcohol standards were acquired in both positive and negative ion mode, in methanol and hexane, using a triple quadrupole/linear ion trap tandem mass spectrometer equipped with both an ESI and an APPI ion source.

RESULTS

In the positive ion mode peaks corresponding to [M + H - H(2)O](+) and [M + H](+) ions were observed in the APPI-MS spectra of polyprenols and dolichols, respectively. In the negative ion mode peaks corresponding to [M + O(2)](-•) and [M + Cl](-) ions were observed for both classes of polyisoprenoid alcohols. The detection limit of polyisoprenoid alcohols was established at the level of 10 pg.

CONCLUSIONS

APPI turned out to be a method of choice for the identification and quantitation of polyisoprenoid alcohols by MS using both polar and non-polar solvents. APPI also enabled greater differentiation of polyprenols and dolichols occurring together in natural samples and gave much better TIC chromatograms without the need for the post-column salt addition required by ESI.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge