English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical and Experimental Metastasis 2013-Feb

Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yoshihide Shimojo
Miho Akimoto
Tsunehiro Hisanaga
Tsuneo Tanaka
Yoshitsugu Tajima
Yoshio Honma
Keizo Takenaga

Keywords

Abstract

Hypoxia has been shown to promote metastasis of cancer cells through induction of epithelial-mesenchymal transition (EMT). It is also known to cause generation of reactive oxygen species (ROS). We investigated here the role of ROS in hypoxia-induced EMT and whether attenuation of ROS by antioxidants suppresses hypoxia-induced EMT and metastasis of human pancreatic cancer cells in a xenograft nude mouse model. PANC-1 and MiaPaCa-2 cells exposed to hypoxia (1 % O(2)) showed increased ROS generation and characteristic changes of EMT such as morphological changes, enhanced invasiveness, and upregulation of EMT regulators, SLUG, SNAI1 and TWIST. The antioxidants N-acetylcysteine (NAC) and ebselen significantly suppressed EMT and the expression of EMT regulators during hypoxia. NAC abrogated activation of HIF-1α and NF-κB, both of which were found to play an active role in hypoxia-induced EMT. Administration of NAC to nude mice with orthotopic tumors suppressed the expression of EMT regulators in hypoxic areas and significantly inhibited hepatic metastasis. Together, the present findings demonstrate that attenuation of ROS by antioxidants suppresses hypoxia-induced EMT and metastatic phenotype, suggesting that antioxidants may be of therapeutic value in treating pancreatic cancers.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge