English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1991-May

Auxin Transport in Suspension-Cultured Soybean Root Cells : II. Anion Effects on Carrier-Mediated Uptake.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M T Loper
R M Spanswick

Keywords

Abstract

To test the hypothesis that the carrier-mediated component of the indoleacetic acid (IAA) influx involves an electrogenic proton/IAA anion symport, the effects on the IAA influx of salts expected to depolarize the membrane potential were examined in suspension-cultured soybean (Glycine max [L.] Merr.) root cells. Although KCl does inhibit carrier-mediated uptake, the effect is specific to the anion at low concentrations and not due to more general processes such as changes in ionic or osmotic strength. Other anions such as bromide, iodide, and fluoride inhibit the carrier more strongly. Because potassium iminodiacetate, which is also expected to depolarize the membrane potential, has no inhibitory effect on the IAA influx, there is no evidence for the involvement of the membrane potential in carrier-mediated uptake. It is therefore most likely that in soybean cells, if carrier-mediated uptake occurs via a proton symport, the H(+):IAA- stoichiometry is 1:1. At concentrations greater than 70 millimolar, sorbitol, a nonionic osmoticum, inhibits carrier-mediated IAA uptake. The effects of specific anions and osmotic potential on the uptake carrier necessitates the reevaluation of other auxin transport studies in which KCl was routinely used as an agent with which to depolarize the membrane potential.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge