English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2009-Nov

Auxin biosynthesis in pea: characterization of the tryptamine pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Laura J Quittenden
Noel W Davies
Jason A Smith
Peter P Molesworth
Nathan D Tivendale
John J Ross

Keywords

Abstract

One pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been characterized by the YUCCA genes in Arabidopsis (Arabidopsis thaliana) and their homologs in other species. YUCCA is thought to be responsible for the conversion of tryptamine to N-hydroxytryptamine. Here we complement the genetic findings with a compound-based approach in pea (Pisum sativum), detecting potential precursors by gas chromatography/tandem-mass spectrometry. In addition, we have synthesized deuterated forms of many of the intermediates involved, and have used them to quantify the endogenous compounds, and to investigate their metabolic fates. Trp, tryptamine, IAAld, indole-3-ethanol, and IAA were detected as endogenous constituents, whereas indole-3-acetaldoxime and one of its products, indole-3-acetonitrile, were not detected. Metabolism experiments indicated that the tryptamine pathway to IAA in pea roots proceeds in the sequence: Trp, tryptamine, IAAld, IAA, with indole-3-ethanol as a side-branch product of IAAld. N-hydroxytryptamine was not detected, but we cannot exclude that it is an intermediate between tryptamine and IAAld, nor can we rule out the possibility of a Trp-independent pathway operating in pea roots.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge