English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2018-Jun

Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
William A Talbot
Alexander R Gerson
Eric Krabbe Smith
Andrew E McKechnie
Blair O Wolf

Keywords

Abstract

The thermoregulatory responses of owls to heat stress have been the subject of few studies. Although nocturnality buffers desert-dwelling owls from significant heat stress during activity, roost sites in tree and cactus cavities or in deep shade provide only limited refuge from high environmental temperatures during the day. We measured thermoregulatory responses to acute heat stress in two species of small owls, the elf owl (Micrathene whitneyi) and the western screech-owl (Megascops kennicottii), which occupy the Sonoran Desert of southwestern North America, an area of extreme heat and aridity. We exposed wild-caught birds to progressively increasing air temperatures (Ta) and measured resting metabolic rate (RMR), evaporative water loss (EWL), body temperature (Tb) and heat tolerance limits (HTL; the maximum Ta reached). Comparatively low RMR values were observed in both species, Tb approximated Ta at 40°C and mild hyperthermia occurred as Ta was increased toward the HTL. Elf owls and screech-owls reached HTLs of 48 and 52°C, respectively, and RMR increased to 1.5 and 1.9 times thermoneutral values. Rates of EWL at the HTL allowed for the dissipation of 167-198% of metabolic heat production (MHP). Gular flutter was used as the primary means of evaporative heat dissipation and produced large increases in evaporative heat loss (44-100%), accompanied by only small increases (<5%) in RMR. These small, cavity-nesting owls have thermoregulatory capacities that are intermediate between those of the open-ground nesting nightjars and the passerines that occupy the same ecosystem.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge