English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2000-Mar

Azo dye-mediated regulation of total phenolics and peroxidase activity in thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) clonal lines.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Z Zheng
K Shetty

Keywords

Abstract

Thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) clonal lines, which were previously isolated from a heterogeneous seed population by plant tissue culture techniques, have been targeted as potential plants for phytoremediation of organic pollutants such as azo dyes and related aromatic compounds. Three thyme clonal lines and three rosemary clonal lines were tested for the ability to grow on hormone-free medium containing 0.01% of azo dye Poly S-119. The results showed that dye tolerance was associated with reduced phenolics and enhanced peroxidase activity in these clonal lines. There was a clear inverse correlation between total phenolics and peroxidase activity in these plants in response to Poly S-119. The tolerance of these clonal lines showed variations at different growing stages. These observations suggested that the peroxidase activity was inducible. Because peroxidases are involved in lignification, wound healing, aromatic compound degradation, pathogen defense, and stiffening, the results suggest that azo dye stimulated the defense response of thyme and rosemary clonal plants by increasing the peroxidase activity. Stereomicroscopic observations revealed that the azo dye was sequestered within the growing axis of the plant roots, which may also enhance the polymerization of azo dye onto the cell wall with the help of enhanced peroxidase activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge