English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Food Microbiology 2012-Mar

Bacteriocin formation by dominant aerobic sporeformers isolated from traditional maari.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Donatien Kaboré
Line Thorsen
Dennis Sandris Nielsen
Torben Sune Berner
Hagrétou Sawadogo-Lingani
Bréhima Diawara
Mamoudou Hama Dicko
Mogens Jakobsen

Keywords

Abstract

The antimicrobial activity of 8 Bacillus spp. and 2 Lysinibacillus spp. representing the predominant aerobic sporeformers during traditional maari fermentations, a traditional fermented baobab seeds product from Burkina Faso, was investigated. The antimicrobial activity was assessed against a total of 31 indicator organisms representing various Gram-negative and positive pathogens. The screening showed that 3 Bacillus subtilis strains (B3, B122 and B222) in particular had antimicrobial activity against some Gram-positive organisms and were selected for further studies. It was found that the antimicrobial substances produced were heat stable, in-sensitive to catalase, sensitive to protease and trypsin but resistant to the proteolytic action of papain and proteinase K and equally active at pH values ranging from 3 to 11. Bacteriocin secretion started in late exponential growth phase and maximum activity was detected during the stationary growth phase. The production of bacteriocin by B. subtilis B3, B122 and B222 was dependent on the aeration conditions. Maximum production of bacteriocin was observed under reduced aeration. Specific primers were used to screen isolates B3, B122 and B222 for genes involved in the synthesis of the bacteriocins subtilosin A, subtilin, sublancin and ericin. Amplicons of the expected sizes were detected for iywB, sboA, sboX, albA and spaS involved in the biosynthesis of subtilosin and subtilin, respectively. The translated nucleotide sequences had 100% identity to the YiwB, SboX and SboA amino acid sequences of the subtilosin A producing B. subtilis subsp. subtilis strain 168. Interestingly there was a 3 amino acid deletion at the N-terminal part of AlbA in B3, B122 and B222 that probably alters the activity of this enzyme. Analysis of the spaS gene sequences of B3, B122 and B222, encoding a subtilin precursor peptide, showed that the translated nucleotide sequence had 98% identity with the corresponding SpaS amino acid sequence of subtilin producing B. subtilis subsp. spizizenii strain ATCC6633.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge