English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Bacteriology 1996-Aug

Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing beta-(1-->6) linkages.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A A Bhagwat
K C Gross
R E Tully
D L Keister

Keywords

Abstract

Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1-->3),beta-(1-->6)-D-glucans during growth in hypoosmotic environments, and evidence is growing that these molecules may have a specific function during plant-microbe interactions in addition to osmoregulation. Site-directed Tn5 mutagenesis of the DNA region upstream of ndvB resulted in identification of a new gene (ndvC) involved in beta-(1--> 3), beta-(1-->6)-glucan synthesis and in nodule development. The predicted translation product was a polypeptide (ca. 62 kDa) with several transmembrane domains. It contained a sequence characteristic of a conserved nucleoside-sugar-binding motif found in many bacterial enzymes and had 51% similarity with a beta-glucanosyltransferase from Candida albicans. B. japonicum carrying a Tn5 insertion in ndvC resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1--> 3)-glycosyl linkages. The mutant strain was only slightly sensitive to hypoosmotic growth conditions compared with the ndvB mutant, but it was severely impaired in symbiotic interactions with soybean (Glycine max). Nodulation was delayed by 8 to 10 days, and many small nodule-like structures apparently devoid of viable bacteria were formed. This finding suggests that the structure of the beta-glucan molecule is important for a successful symbiotic interaction, and beta-glucans may have a specific function in addition to their role in hypoosmotic adaptation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge