English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 2019-Mar

Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lin Jiao
Shengqi Wang
Yifeng Zheng
Neng Wang
Bowen Yang
Dongmei Wang
Depo Yang
Wenjie Mei
Zhimin Zhao
Zhiyu Wang

Keywords

Abstract

Emerging evidence has suggested that targeting glycolysis may be a promising strategy for cancer treatment. Betulinic acid (BA) is a natural pentacyclic terpene that has been reported to be active in inhibiting various malignancies. Here, we showed that BA could inhibit aerobic glycolysis activity in breast cancer cell lines MCF-7 and MDA-MB-231 by hampering lactate production, glucose uptake and extracellular acidification rate (ECAR), as well as suppressing aerobic glycolysis-related proteins including c-Myc, lactate dehydrogenase A (LDH-A) and p-PDK1/PDK1 (pyruvate dehydrogenase kinase 1). Mechanistic studies validated Caveolin-1 (Cav-1) as one of key targets of BA in suppressing aerobic glycolysis, as BA administration resulted in Cav-1 upregulation, whereas silencing Cav-1 abrogated the inhibitory effect of BA on aerobic glycolysis. Further investigations demonstrated that BA suppressed aerobic glycolysis in breast cancer cells by regulating the Cav-1/NF-κB/c-Myc pathway. More meaningfully, BA significantly inhibited breast cancer growth and glycolytic activity in both the transgenic MMTV-PyVT+/- breast cancer spontaneous model and the zebrafish breast cancer xenotransplantation model without any detectable side effects in vivo. Taken together, our study sheds novel insights into BA as a promising candidate drug for suppressing aerobic glycolysis, highlighting Cav-1 as a potential molecular target of BA and aerobic glycolysis regulation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge