English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Chemistry Chemical Physics 2016-Jul

Bifurcate localization modes of excess electron in aqueous Ca(2+)amide solution revealed by ab initio molecular dynamics simulation: towards hydrated electron versus hydrated amide anion.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ru Zhang
Yuxiang Bu

Keywords

Abstract

In this work, we conduct ab initio molecular dynamics simulations on the localization dynamics of an excess electron (EE) in acetamide/Ca(2+) aqueous solutions with three different interaction modes of Ca(2+) with acetamide: tight contact, solvent-shared state, and separated interaction. The simulated results reveal that an EE could exhibit two different localization behaviors in these acetamide/Ca(2+) aqueous solutions depending on different amideCa(2+) interactions featuring different contact distances. For the tight contact and solvent-shared state of amideCa(2+) solutions, vertically injected diffuse EEs follow different mechanisms with different dynamics, forming a cavity-shaped hydrated electron or a hydrated amide anion, respectively. Meanwhile, for the separated state, only one localization pattern of a vertically injected diffuse EE towards the formation of hydrated amide anion is observed. The hindrance of hydrated Ca(2+) and the attraction of the hydrated amide group originating from its polarity and low energy π* orbital are the main driving forces. Additionally, different EE localization modes have different effects on the interaction between the amide group and Ca(2+) in turn. This work provides an important basis for further understanding the mechanisms and dynamics of localizations/transfers of radiation-produced EEs and associated EE-induced lesions and damage to biological species in real biological environments or other aqueous solutions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge