English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Graphics and Modelling 2019-Nov

Binding recognition of substrates in NS2B/NS3 serine protease of Zika virus revealed by molecular dynamics simulations.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bodee Nutho
Thanyada Rungrotmongkol

Keywords

Abstract

Zika virus (ZIKV) has become a global public health concern. The recent epidemiological data has revealed a possible association of ZIKV infection with more serious complications, particularly for Guillain-Barré syndrome in adults and microcephaly in newborn children. Till now, there is no vaccine or effective drug commercially available to combat with ZIKV infection. An attractive drug target for the ZIKV treatment is the NS2B/NS3 serine protease, which is essential for viral polyprotein processing. Herein, classical molecular dynamics (MD) simulations were performed on the ZIKV NS2B/NS3 serine protease in complex with four peptide substrates to investigate the binding recognition and protein-substrate interactions. The obtained results indicate that the P1 and P2 positions of the substrate play a significant role in binding with the protease enzyme, while the P3 and P4 positions show a minor contribution in binding interaction. Moreover, the binding free energy calculation based on the MM/PBSA method suggests that among the four similar peptide substrates, the peptide Ac-D-RKOR-ACC displays the strongest binding affinity towards the ZIKV protease due to the high energy contribution at the S2 subsite particularly for the NS3 residue D75 with the P2(O) residue of this substrate, which is in line with the experimental data. Thus, the information derived from MD simulations presented here would be useful for the design of potent protease inhibitors.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge