English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2015

Bio-mediated route for the synthesis of shape tunable Y₂O₃: Tb³⁺ nanoparticles: Photoluminescence and antibacterial properties.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J B Prasannakumar
Y S Vidya
K S Anantharaju
G Ramgopal
H Nagabhushana
S C Sharma
B Daruka Prasad
S C Prashantha
R B Basavaraj
H Rajanaik

Keywords

Abstract

The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Tb(3+) ion concentration on structural morphology, UV-visible absorption and PL emission were investigated systematically. The PL emission of Y2O3: Tb(3+) (1-11 mol%) nanophosphors were studied in detail under 271 and 304nm excitation wavelengths. The CIE coordinates lies well within green region and correlated color temperature values were found to be 6221 and 5562K under different excitations. Thus, the present phosphor can serve as an excellent candidate for LEDs. Further, prismatic Y2O3: Tb(3+) (3 mol%) nanophosphor showed significant antibacterial activity against Pseudomonas desmolyticum and Staphylococcus aureus. The present study successfully demonstrates Y2O3: Tb(3+) nanophosphors can be used for display applications as well as in medical applications for controlling pathogenic bacteria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge