English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
3 Biotech 2018-Feb

Bioactive compounds from mangrove derived rare actinobacterium Saccharomonospora oceani VJDS-3.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Manideepa Indupalli
Vijayalakshmi Muvva
Ushakiranmayi Mangamuri
Rajesh Kumar Munaganti
Krishna Naragani

Keywords

Abstract

A rare actinobacterium was isolated from Nizampatnam mangrove ecosystem of Andhra Pradesh, India, and was screened for its ability to produce bioactive compounds. The potential strain was identified as Saccharomonospora oceani VJDS-3 by polyphasic taxonomy. Purification of the biologically active compounds by column chromatography led to the isolation of three compounds, namely methoxy ethyl cinnamate (ethyl(E)-3-(4-methoxyphenyl)acrylate) (R1), 4-hydroxy methyl cinnamate (methyl(E)-3-(4-hydroxyphenyl)acrylate) (R2) and 4-methylbenzoic acid (R3). The structure of the compounds was elucidated on the basis of spectroscopic analysis including FTIR, EIMS, 1HNMR and 13CNMR spectroscopies. The antimicrobial activity of the bioactive compounds produced by the strain was tested against a panel of bacteria and fungi, and expressed in terms of minimum inhibitory concentration. Compound (R1) exhibited higher antimicrobial potential (50 µg/ml) against Staphylococcus aureus, Bacillus megaterium and Candida albicans compared to R2 and R3. Antioxidant activity of compounds was determined by DPPH and ABTS radical scavenging activities. The results revealed that compound R3 effectively scavenged DPPH (73.08 ± 1.29) and ABTS (99.74 ± 0.00) radicals at a concentration of 25 and 50 µg/ml, respectively. Antidiabetic and anti-obesity activities were evaluated by inhibitory potential of compounds against alpha-glucosidase, alpha-amylase and pancreatic lipase by spectrophotometric assays. Compound R1 showed effective inhibition against alpha-glucosidase (66.8 ± 1.2) at 20 µg/ml while moderate to weak activities were found against alpha-amylase and pancreatic lipase. To the best of our knowledge, this is the first report on the isolation of supra said compounds from the genus Saccharomonospora.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge