English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2012-Mar

Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rafael Real-Guerra
Fernanda Staniscuaski
Barbara Zambelli
Francesco Musiani
Stefano Ciurli
Célia R Carlini

Keywords

Abstract

Urea is the nitrogen fertilizer most utilized in crop production worldwide. Understanding all factors involved in urea metabolism in plants is an essential step towards assessing and possibly improving the use of urea by plants. Urease, the enzyme responsible for urea hydrolysis, and its accessory proteins, necessary for nickel incorporation into the enzyme active site and concomitant activation, have been extensively characterized in bacteria. In contrast, little is known about their plant counterparts. This work reports a detailed characterization of Glycine max UreG (GmUreG), a urease accessory protein. Two forms of native GmUreG, purified from seeds, were separated by metal affinity chromatography, and their properties (GTPase activity in absence and presence of Ni(2+) or Zn(2+), secondary structure and metal content) were compared with the recombinant protein produced in Escherichia coli. The binding affinity of recombinant GmUreG (rGmUreG) for Ni(2+) and Zn(2+) was determined by isothermal titration calorimetry. rGmUreG binds Zn(2+) or Ni(2+) differently, presenting a very tight binding site for Zn(2+) (K (d) = 0.02 ± 0.01 μM) but not for Ni(2+), thus suggesting that Zn(2+) may play a role on the plant urease assembly process, as suggested for bacteria. Size exclusion chromatography showed that Zn(2+) stabilizes a dimeric form of the rGmUreG, while NMR measurements indicate that rGmUreG belongs to the class of intrinsically disordered proteins. A homology model for the fully folded GmUreG was built and compared to bacterial UreG models, and the possible sites of interaction with other accessory proteins were investigated.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge