English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2001-Nov

Biochemical characterization of the Arabidopsis biotin synthase reaction. The importance of mitochondria in biotin synthesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Picciocchi
R Douce
C Alban

Keywords

Abstract

Biotin synthase, encoded by the bio2 gene in Arabidopsis, catalyzes the final step in the biotin biosynthetic pathway. The development of radiochemical and biological detection methods allowed the first detection and accurate quantification of a plant biotin synthase activity, using protein extracts from bacteria overexpressing the Arabidopsis Bio2 protein. Under optimized conditions, the turnover number of the reaction was >2 h(-1) with this in vitro system. Purified Bio2 protein was not efficient by itself in supporting biotin synthesis. However, heterologous interactions between the plant Bio2 protein and bacterial accessory proteins yielded a functional biotin synthase complex. Biotin synthase in this heterologous system obeyed Michaelis-Menten kinetics with respect to dethiobiotin (K(m) = 30 microM) and exhibited a kinetic cooperativity with respect to S-adenosyl-methionine (Hill coefficient = 1.9; K(0.5) = 39 microM), an obligatory cofactor of the reaction. In vitro inhibition of biotin synthase activity by acidomycin, a structural analog of biotin, showed that biotin synthase reaction was the specific target of this inhibitor of biotin synthesis. It is important that combination experiments using purified Bio2 protein and extracts from pea (Pisum sativum) leaf or potato (Solanum tuberosum) organelles showed that only mitochondrial fractions could elicit biotin formation in the plant-reconstituted system. Our data demonstrated that one or more unidentified factors from mitochondrial matrix (pea and potato) and from mitochondrial membranes (pea), in addition to the Bio2 protein, are obligatory for the conversion of dethiobiotin to biotin, highlighting the importance of mitochondria in plant biotin synthesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge