English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology 2014-Jan

Biochemical, histological and ultrastructural alterations of the alimentary system in the freshwater crab Sinopotamon henanense subchronically exposed to cadmium.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hao Wu
Ruijing Xuan
Yingjun Li
Xiaomin Zhang
Weixin Jing
Lan Wang

Keywords

Abstract

Cadmium (Cd) is one of the toxic metals in the aquatic environment. We investigated the effects of Cd on the digestive enzymes, antioxidant enzymes, malondialdehyde (MDA) content and morphology of the hepatopancreas and intestine in the freshwater crab Sinopotamon henanense. Crabs were exposed to sublethal Cd concentrations of 0, 0.725, 1.450 and 2.900 mg/L for 21 days. After Cd exposure, the activities of maltase, amylase and trypsin of two tissues were lower than the control. The activities of superoxide dismutase, catalase and glutathione peroxidase in the hepatopancreas and intestine were decreased, and the MDA concentration increased in all of the treated groups, over the experimental period. The results of light and transmission electron microscopy showed that 2.900 mg/L of Cd exposure caused profound morphological damages in the hepatopancreas and midgut. After exposure, histological abnormalities of two tissues were discovered, including cellular swelling and necrosis. Additionally, alterations in microvilli, nucleus, mitochondria, rough endoplasmic reticulum as well as Golgi complex in epithelial cells of two tissues were observed. This may be due to antioxidant enzymes activities that were reduced by Cd in the alimentary system of the crabs, and led to membrane lipid peroxidation. The membrane structure was destroyed, and caused further tissue damage, which likely made the alimentary system unable to secrete digestive enzymes, leading to further reduction of digestive enzymes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge