English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Pharmacology 1995-Oct

Biochemical pharmacology of penclomedine (NSC-338720).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J A Benvenuto
W N Hittelman
L A Zwelling
W Plunkett
T K Pandita
D Farquhar
R A Newman

Keywords

Abstract

Penclomedine (PEN) is a synthetic pyridine derivative that has been selected for clinical development based on its activity against human and mouse breast tumors implanted in mice. Its mechanism of action was unclear, and we were interested in determining its mechanism of cytotoxicity in vitro and in vivo. We found chromosome breaks, gaps, and exchanges in P388 ascites cells from BD2F1 mice treated with 200 mg/kg PEN. Maximal observed damage occurred 24 hr after drug administration. Alkaline elution indicated only limited DNA strand breaks and interstrand cross-linking. In vitro, PEN (75 micrograms/mL) inhibited RNA and DNA syntheses almost completely. In addition, incubation of [14C]PEN with rat liver S-9 fraction in the presence of calf thymus DNA resulted in the stable transfer of radioactivity to DNA. Addition of butylated hydroxytoluene, a free radical scavenger, to the incubation mixture inhibited the binding of drug to DNA, implicating free radicals as the ultimate reactive species. These data suggest that PEN can be metabolized to free radical, DNA-reactive products, and that its cytotoxicity is due to chromosomal damage produced by monofunctional alkylation. As an alternate mechanism, the ability of PEN to inhibit cellular dihydroorotate dehydrogenase was explored. Although PEN is an inhibitor of this enzyme in cells in vivo, in vitro, and in isolated cell sonicates, HPLC analyses of ribonucleotide triphosphate pools in P388 cells showed that all triphosphates had increased, especially UTP. Addition of uridine to the cell culture failed to prevent PEN-mediated cytotoxicity, suggesting that inhibition of de novo pyrimidine biosynthesis was not likely to be an important mechanism of action of this drug. These data suggest that PEN is activated in cells to a free radical that binds DNA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge