English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research 1993-Nov

Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Schmidt
K Horch
R Normann

Keywords

Abstract

The passive biocompatibility of silicon-based electrode arrays was studied in feline cortical tissue. Three types of arrays were used: uncoated, coated with polyimide, and coated with polyimide over an adhesion promoter. Fifteen arrays were implanted for 24 h to determine early tissue reaction to the implantation procedure, and twelve arrays were implanted for 6 months to determine structural and material biocompatibility. Edema and hemorrhage were present around the short-term implants, but involved less than 6% of the total area of the tissue covered by the array. With chronic implants, leukocytes were rarely present and macrophages were found around roughly one-third of the tracks. Remnants of foreign material from the electrodes could be identified in less than 10% of the tracks. Gliosis was found around all tracks, forming an annulus between 20 and 40 microns thick. A capsule was not always present, and never exceeded a thickness of 9 microns. These results suggest that the implantation procedure produces limited amounts of tissue damage, and that the arrays are biocompatible. However, the arrays insulated with polyimide over a primer had significantly greater involvement of macrophages, gliosis, and capsule formation than uncoated arrays and arrays insulated with polyimide without printer, perhaps indicating a reaction to aluminum oxide in the primer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge