English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Microbiology 2019-Aug

Bioconversion of indole-3-acetonitrile by the N2-fixing bacterium Ensifer meliloti CGMCC 7333 and its Escherichia coli-expressed nitrile hydratase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yun-Xiu Zhao
Lei-Lei Guo
Shi-Lei Sun
Jing-Jing Guo
Yi-Jun Dai

Keywords

Abstract

An N2-fixing bacterium, Ensifer meliloti CGMCC 7333, has been reported to degrade the cyano-containing neonicotinoid insecticides acetamiprid and thiacloprid using a nitrile hydratase (NHase). Here, the bioconversion of indole-3-acetonitrile (IAN) by E. meliloti, Escherichia coli overexpressing the NHase, and purified recombinant NHase was studied. E. meliloti converted IAN to the product indole-3-acetamide (IAM), and no nitrilase or amidase activities, or indole-3-acetic acid formation, were detected. Whole cells of E. meliloti converted IAN from the initial content of 6.41 to 0.06 mmol/L in 48 h. Meanwhile, forming 5.99 mmol/L IAM, the molar conversion of 94.4%. E. coli Rosetta overexpressing the NHase from E. meliloti produced 4.46 mmol/L IAM in 5 min, with a conversion rate of 91.1%. The purified NHase had a Vmax for IAN conversion of 294.28 U/mg. Adding 2% and 10% (v/v) dichloromethane to 50 mmol/L sodium phosphate buffer containing 200 mg/L IAN increased the NHase activity by 26.8% and 11.5% respectively, while the addition of 20% hexane had no inhibitory effect on IAN bioconversion. E. meliloti shows high NHase activity without forming a byproduct carboxylic acid, and its tolerance of dichloromethane and hexane increases its potential for application in the green biosynthesis of high-value amide compounds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge