English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2019-Mar

Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nianjie Shang
Mengjiao Ding
Meixue Dai
Hongli Si
Shiguo Li
Guoyan Zhao

Keywords

Abstract

Endophytic microorganisms can metabolize organic contaminants and assist in plant growth, thus facilitating the phytoremediation of polluted environments. An endophytic bacterium capable of decoloring malachite green (MG) was isolated from the leaves of the wetland plant Suaeda salsa and was identified as Klebsiella aerogenes S27. Complete decolorization of MG (100 mg/l) was achieved in 8 h at 30 °C and pH 7.0. Ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy analyses indicated the degradation of MG by the isolate. The enzymic assays of the strain showed the triphenylmethane reductase (TMR) activity. A gene encoding putative TMR-like protein (named as KaTMR) was cloned and heterologously expressed in Escherichia coli. KaTMR showed only 42.6-43.3% identities in amino acids compared with well-studied TMRs, and it phylogenetically formed a new branch in the family of TMRs. The degraded metabolites by recombinant KaTMR were detected by liquid chromatography-mass spectrometry, showing differences from the products of reported TMRs. The biotransformation pathway of MG was proposed. Phytotoxicity studies revealed the less-toxic nature of the degraded metabolites compared to the dye. This study presented the first report of an endophyte on the degradation and detoxification of triphenylmethane dye via a novel oxidoreductase, thus facilitating the study of the plant-endophyte symbiosis in the bioremediation processes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge