English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomechanics 2018-01

Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lanjiao Liu
Wenxiao Zhang
Li Li
Xinyao Zhu
Jinyun Liu
Xinyue Wang
Zhengxun Song
Hongmei Xu
Zuobin Wang

Keywords

Abstract

Colchicine is a drug commonly used for the treatment of gout, however, patients may sometimes encounter side-effects induced by taking colchicine, such as nausea, vomiting, diarrhea and kidney failure. In this regard, it is imperative to investigate the mechanism effects of colchicine on biological cells. In this paper, we present a method for the detection of mechanical properties of nephrocytes (VERO cells), hepatocytes (HL-7702 cells) and hepatoma cells (SMCC-7721 cells) in culture by atomic force microscope (AFM) to analyze the 0.1 μg/mL colchicine-induced effects on the nanoscale for two, four and six hours. Compared to the corresponding control cells, the biomechanical properties of the VERO and SMCC-7721 cells changed significantly and the HL-7702 cells did not considerably change after the treatment when considering the same time period. Based on biomechanical property analyses, the colchicine solution made the VERO and SMCC-7721 cells harder. We conclude that it is possible to reduce the division rate of the VERO cells and inhibit the metastasis of the SMCC-7721 cells. The method described here can be applied to study biomechanics of many other types of cells with different drugs. Therefore, this work provides an accurate and rapid method for drug screening and mechanical analysis of cells in medical research.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge