English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Methods 2018

Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Janet M Paper
Thiya Mukherjee
Kathrin Schrick

Keywords

Abstract

UNASSIGNED

Phospholipids are important structural and signaling molecules in plant membranes. Some fluorescent dyes can stain general lipids of membranes, but labeling and visualization of specific lipid classes have yet to be developed for most components of the membrane. New techniques for visualizing membrane lipids are needed to further delineate their dynamic structural and signaling roles in plant cells. In this study we examined whether propargylcholine, a bioortholog of choline, can be used to label the major membrane lipid, phosphatidylcholine, and other choline phospholipids in plants. We established that propargylcholine is readily taken up by roots, and that its incorporation is not detrimental to plant growth. After plant tissue is harvested and fixed, a click-chemistry reaction covalently links the alkyne group of propargylcholine to a fluorescently-tagged azide, resulting in specific labeling of choline phospholipids.

UNASSIGNED

Uptake of propargylcholine, followed by click chemistry with fluorescein or Alexa Fluor 594 azide was used to visualize choline phospholipids in cells of root, leaf, stem, silique and seed tissues from Arabidopsis thaliana. Co-localization with various subcellular markers indicated coinciding fluorescent signals in cell membranes, such as the tonoplast and the ER. Among different cell types in the leaf epidermis, guard cells displayed strong labeling. Mass spectrometry-based lipidomic analysis of the various plant tissues revealed that incorporation of propargylcholine was strongest in roots with approximately 50% of total choline phospholipids being labeled, but it was also incorporated in the other tissues including seeds. Phospholipid profiling confirmed that, in each tissue analyzed, incorporation of the bioortholog had little impact on the pool of choline plus choline-like phospholipids or other lipid species.

UNASSIGNED

We developed and validated a click-chemistry based method for fluorescence imaging of choline phospholipids using a bioortholog of choline, propargylcholine, in various cell-types and tissues from Arabidopsis. This click-chemistry method provides a direct way to metabolically tag and visualize specific lipid molecules in plant cells. This work paves the way for future studies addressing in situ localization of specific lipids in plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge