English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2000-Apr

Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly(propylene glycol-co-fumaric acid)-based cement implants in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K U Lewandrowski
J D Gresser
D L Wise
D J Trantol

Keywords

Abstract

Bioresorbable bone graft substitutes may significantly reduce the disadvantages associated with autografts, allografts and other synthetic materials currently used in bone graft procedures. We investigated the biocompatibility and osteointegration of a bioresorbable bone graft substitute made from the unsaturated polyester poly(propylene-glycol-co-fumaric acid), or simply poly(propylene fumarate), PPF, which is crosslinked in the presence of soluble and insoluble calcium filler salts. Four sets of animals each having three groups of 8 were evaluated by grouting bone graft substitutes of varying compositions into 3-mm holes that were made into the anteromedial tibial metaphysis of rats. Four different formulations varying as to the type of soluble salt filler employed were used: set 1--calcium acetate, set 2--calcium gluconate, set 3--calcium propionate, and set 4--control with hydroxapatite, HA, only. Animals of each of the three sets were sacrificed in groups of 8 at postoperative week 1, 3, and 7. Histologic analysis revealed that in vivo biocompatibility and osteointegration of bone graft substitutes was optimal when calcium acetate was employed as a soluble salt filler. Other formulations demonstrated implant surface erosion and disintegration which was ultimately accompanied by an inflammatory response. This study suggested that PPF-based bone graft substitutes can be designed to provide an osteoconductive pathway by which bone will grow in faster because of its capacity to develop controlled porosities in vivo. Immediate applicability of this bone graft substitute, the porosity of which can be tailored for the reconstruction of defects of varying size and quality of the recipient bed, is to defects caused by surgical debridement of infections, previous surgery, tumor removal, trauma, implant revisions and joint fusion. Clinical implications of the relation between developing porosity, resulting osteoconduction, and bone repair in vivo are discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge