English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1984-Nov

Biosynthesis of ascaridole: iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of Chenopodium ambrosioides fruit.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M A Johnson
R Croteau

Keywords

Abstract

Ascaridole, an asymmetric monoterpene endoperoxide with anthelmintic properties, occurs as a major constituent (60-80%) in the volatile oil of American wormseed fruit (Chenopodium ambrosioides: Chenopodiaceae), and as a lesser component in the leaf pocket oil of the boldo tree (Peumus boldus: Monimiaceae). Determination of optical activity and chromatographic resolution of naturally occurring ascaridole, and several synthetic derivatives, showed that both wormseed and boldo produce ascaridole in racemic form. The biosynthesis of ascaridole from the conjugated, symmetrical diene alpha-terpinene (a major component of the oil from wormseed) was shown to be catalyzed by a soluble iodide peroxidase isolated from homogenates of C. ambrosioides fruit and leaves. The enzymatic synthesis of ascaridole was confirmed by capillary gas-liquid chromatography and mass spectrometry of the product, which was also shown to be racemic. Optimal enzymatic activity occurred at pH 4.0 in the presence of 2.5 mM H2O2 and 1 mM NaI. Soluble enzyme extracts were fractionated by gel filtration on both Sephacryl S-300 and Sephadex G-100, and were shown to consist of a high-molecular-weight peroxidase component (Mr greater than 1,000,000, 30% of total activity) and two other peroxidase species having apparent molecular weights of 62,000 and 45,000 (major component). Peroxidase activity was susceptible to proteolytic destruction only after periodate treatment, suggesting an association of the enzyme(s) with polysaccharide material. Ascaridole biosynthesis from alpha-terpinene was inhibited by cyanide, catalase, and reducing agents, but not by compounds that trap superoxide or quench singlet oxygen. A peroxide transfer reaction initiated by peroxidase-generated I+ is proposed for the conversion of alpha-terpinene to ascaridole.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge