English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
IUBMB Life 2006-Oct

Biosynthesis of polyunsaturated fatty acids in lower eukaryotes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Antonio D Uttaro

Keywords

Abstract

Polyunsaturated fatty acids have important structural roles in cell membranes. They are also intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediate fever, inflammation, blood pressure and neurotransmission. Arachidonic and docosahexaenoic acids are essential components of brain tissues and, through their involvement in the development of neural and retinal functions, important dietary nutrients for neonatal babies. Lower eukaryotes are particularly rich in C20-22 polyunsaturated fatty acids. Fungi and marine microalgae are currently used to produce nutraceutic oils. Other protists and algae are being studied because of the variability in their enzymes involved in polyunsaturated fatty acid biosynthesis. Such enzymes could be used as source for the production of transgenic organisms able to synthesize designed oils for human diet or, in the case of parasitic protozoa, they might be identified as putative chemotherapeutic targets. Polyunsaturated fatty acids can be synthesized by two different pathways: an anaerobic one, by using polyketide synthase related enzymes, and an aerobic one, which involves the action of elongases and oxygen dependent desaturases. Desaturases can be classified into three main types, depending on which of the consecutive steps of polyunsaturated fatty acid synthesis they are involved with. The enzymes may be specialized to act on: saturated substrates (type I); mono- and di-unsaturated fatty acids by introducing additional double bonds at the methyl-end site of the existing double bonds (type II); or the carboxy half ('front-end') of polyunsaturated ones (type III). Type III desaturases require the alternating action of elongases. A description of the enzymes that have been isolated and functionally characterized is provided, in order to highlight the different pathways found in lower eukaryotes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge