English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2013-Dec

Biosynthesis of the carbohydrate moieties of arabinogalactan proteins by membrane-bound β-glucuronosyltransferases from radish primary roots.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maya Endo
Toshihisa Kotake
Yoko Watanabe
Kazumasa Kimura
Yoichi Tsumuraya

Keywords

Abstract

A membrane fraction from etiolated 6-day-old primary radish roots (Raphanus sativus L. var hortensis) contained β-glucuronosyltransferases (GlcATs) involved in the synthesis of the carbohydrate moieties of arabinogalactan proteins (AGPs). The GlcATs transferred [(14)C]GlcA from UDP-[(14)C]GlcA on to β-(1 → 3)-galactan as an exogenous acceptor substrate, giving a specific activity of 50-150 pmol min(-1) (mg protein)(-1). The enzyme specimen also catalyzed the transfer of [(14)C]GlcA on to an enzymatically modified AGP from mature radish root. Analysis of the transfer products revealed that the transfer of [(14)C]GlcA occurred preferentially on to consecutive (1 → 3)-linked β-Gal chains as well as single branched β-(1 → 6)-Gal residues through β-(1 → 6) linkages, producing branched acidic side chains. The enzymes also transferred [(14)C]GlcA residues on to several oligosaccharides, such as β-(1 → 6)- and β-(1 → 3)-galactotrioses. A trisaccharide, α-L-Araf-(1 → 3)-β-Gal-(1 → 6)-Gal, was a good acceptor, yielding a branched tetrasaccharide, α-L-Araf-(1 → 3)[β-GlcA-(1 → 6)]-β-Gal-(1 → 6)-Gal. We report the first in vitro assay system for β-GlcATs involved in the AG synthesis as a step toward full characterization and cloning.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge