English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1993-Jan

Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
E Swiezewska
G Dallner
B Andersson
L Ernster

Keywords

Abstract

The localization of ubiquinone (UQ) and plastoquinone (PQ) biosynthesis in subfractions isolated from spinach leaves has been studied. UQ-9 and UQ-10 were found mainly in mitochondria, whereas PQ was enriched in chloroplasts, but also found in Golgi membranes. alpha-Unsaturated polyprenol-11 was also present at a low concentration in chloroplasts. Autoradiography revealed the presence of nonaprenyl-4-hydroxybenzoate (NPHB) and nonaprenyl-2-methylquinol (NPMQ) transferase activities involved in quinone biosynthesis in all subfractions, but the specific activities involved in quinone biosynthesis in the total microsomal fraction were 20 times higher than those in mitochondria and chloroplasts. The isolated Golgi vesicles were particularly enriched in both activities. When the incubation medium containing total microsomes or Golgi membranes was supplemented with NADH, NADPH, S-adenosylmethionine, and an ATP-generating system, NPHB and NPMQ were transferred to UQ-9 and PQ, respectively. trans-Prenyltransferase, which synthesizes the side chain of UQ and PQ, was present in the total microsomal fraction. With farnesyl-PP as substrate, no product was formed, but with geranyl-PP, solanesyl-PP was synthesized and transferred to 4-hydroxybenzoate present in the total microsomal fraction. The results show that these membranes from spinach contain farnesyl-PP synthetase. It is concluded that the plant leaf Golgi membranes contain the enzymes for both UQ and PQ biosynthesis and that a specific transport and targeting system is required for selective transfer of UQ to the mitochondria and of PQ to the chloroplast.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge