English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Eye Research 2010-Feb

Broccoli regulates protein alterations and cataractogenesis in selenite models.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Vibin
S G Siva Priya
B N Rooban
V Sasikala
V Sahasranamam
Annie Abraham

Keywords

Abstract

OBJECTIVE

To study the efficacy of Brassica oleracea var. italica (Broccoli) in the prevention of selenite induced biochemical changes and the incidence of cataractogenesis in vivo.

METHODS

Eight day old Sprague-Dawley rat pups were divided into four groups: I-Control; II-Sodium selenite (4 mg/kg body weight) administered; III-Sodium selenite + quercetin; and IV-Sodium selenite + flavonoid fraction of broccoli (FFB). Treatment groups III and IV received quercetin and FFB intraperitoneally from 8th to 15th day at a concentration (2.0 mg/kg body weight). The development of cataract was assessed and graded by slit-lamp examination. Some relevant biochemical parameters-such as activities of superoxide dismutase (SOD), catalase, Ca(2+)ATPase, calpains, concentration of reduced glutathione (GSH), levels of calcium, lipid peroxidation product-thiobarbituric acid reacting substances (TBARS) and SDS-PAGE analysis of lens water soluble proteins (WSF) were analyzed.

RESULTS

FFB modulates selenite-induced biochemical changes in albino rats. Lenses of Group I rats were clear but in Group II, all lenses developed dense opacification (grade 5 and 6), whereas mild opacifications were observed in Group III and Group IV (grade 2). Group III and Group IV lenses exhibited significantly higher values of antioxidant enzymes, Ca(2+)ATPase, and GSH, whereas lower values were obtained for TBARS, calcium, and calpains compared to Group II. Lens protein profile of water soluble proteins showed normal levels of Group III and Group IV compared to Group II lenses.

CONCLUSIONS

FFB prevents selenite-induced cataractogenesis in albino rat pups, possibly by maintaining antioxidant status and ionic balance through Ca(2+) ATPase pump, inhibition of lipid peroxidation, calpain activation, and protein insolubilization, which have been reported in this article for the first time.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge