English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2008-Mar

CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Manohar Chakrabarti
Steven W Bowen
Nicholas P Coleman
Karen M Meekins
Ralph E Dewey
Balazs Siminszky

Keywords

Abstract

Nicotine to nornicotine conversion in tobacco (Nicotiana tabacum L.) is regulated by an unstable converter locus which in its activated state gives rise to a high nornicotine, low nicotine phenotype in the senescing leaves. In plants that carry the high nornicotine trait, nicotine conversion is primarily catalyzed by a cytochrome P450 protein, designated CYP82E4 whose transcription is strongly upregulated during leaf senescence. To further investigate the regulation of CYP82E4 expression, we examined the spatiotemporal distribution and the stress- and signaling molecule-elicited expression patterns of CYP82E4 using alkaloid analysis and a fusion construct between the 2.2 kb upstream regulatory region of CYP82E4 and the beta-glucurodinase (GUS) gene. Histochemical and fluorometric analyses of GUS expression revealed that the CYP82E4 promoter confers high levels of expression in the senescing leaves and flowers, and in the green stems of young and mature plants, but only very low activity was detected in the roots. In the leaves, GUS activity was strongly correlated with the progression of senescence. Treatments of leaf tissue with various signaling molecules including abscisic acid, ethylene, jasmonic acid, salicylic acid and yeast extract; and stresses, such as drought, wounding and tobacco mosaic virus infection did not enhance nicotine conversion or GUS activity in the green leaves, but an increase in CYP82E4 expression was observed in response to ethylene- or tobacco mosaic virus-induced senescence. These results suggest that the expression of CYP82E4 is senescence-specific in the leaves and the use of the CYP82E4 promoter could provide a valuable tool for regulating gene expression in the senescing leaves.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge