English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Toxicology 2009-Jun

Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chao Wang
Qin Sun
Liya Wang

Keywords

Abstract

Phytochelatins (PCs) have been involved in metal detoxification, and used as potential biomarkers for an evaluation of metal toxicity. However, most studies have generally been limited to high concentrations of metals. In this study, low concentrations of cadmium (Cd) (0.01-0.64 microM) usually present in moderately polluted environments were adopted to investigate Cd toxicity, PC production, and their relationship in a rooted-submerged macrophyte Vallisneria spiralis. It was observed that 0.01-0.04 microM Cd had no significant effects on the growth of this plant when compared with the control plant without Cd, whereas 0.08-0.64 microM Cd showed toxicity, as indicated by the gradual decreases of leaf and root fresh weights. Cadmium accumulation was significantly higher in leaves than in the roots. Correspondingly, PCs were induced in leaves and roots at every Cd concentrations studied, in particular 0.16-0.64 microM, which were higher in leaves than in roots. There existed a positively linear relationship between PC concentrations and Cd toxicity in leaf and root. Furthermore, the levels of glutathione (GSH) in leaves and roots increased with increasing Cd concentrations in solutions and exposure time, but the extent of such increase was lower than that of PCs. Cadmium uptake antagonized Zn uptake. Combined effects of Cd and Fe or Cd and Mn were antagonistic in leaves and synergistic in roots. On the basis of the present results, it was further suggested that PCs can be used as potential biomarkers for monitoring the metal toxicity in moderately polluted environments.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge