English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1994-Nov

Caffeine stimulation of malignant hyperthermia-susceptible sarcoplasmic reticulum Ca2+ release channel.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N H Shomer
J R Mickelson
C F Louis

Keywords

Abstract

The altered caffeine sensitivity of malignant hyperthermia-susceptible (MHS) muscle contracture is one basis of the diagnostic test for this syndrome. To determine whether the Arg615-to-Cys615 mutation of the porcine sarcoplasmic reticulum (SR) Ca2+ release channel is directly responsible for this altered caffeine sensitivity, the single-channel kinetics of purified MHS and normal pig Ca2+ release channels were examined. Initial studies demonstrated that decreasing the pH of the medium in either the cis- or trans-chamber decreased the Ca2+ release channel percent open time (Po). The half-inhibitory pH of MHS channels (6.86 +/- 0.04, n = 17) was significantly different from that of normal channels (7.08 +/- 0.07, n = 14). At pH 7.4, in either 7 or 0.12 microM Ca2+, MHS channel Po was not significantly different from that of normal channels over the range 0-10 mM caffeine. Although at pH 6.8 in 7 microM Ca2+ MHS channel Po was greater than that of normal channels over the range 0-20 mM caffeine, the difference could be eliminated by dividing each mean MHS Po by a scaling factor of 3.2. Thus the MHS Ca2+ release channel mutation does not appear to be directly responsible for the altered caffeine sensitivity of MHS pig muscle contracture. Rather, this altered caffeine sensitivity may result from an altered resting myoplasmic Ca2+ concentration or the altered pH and Ca2+ sensitivity of Ca2+ release channel Po of MHS muscle.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge