English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuropharmacology 2017-Sep

Cannabinoid CB1 and CB2 receptors differentially modulate L- and T-type Ca2+ channels in rat retinal ganglion cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wen-Jing Qian
Ning Yin
Feng Gao
Yanying Miao
Qian Li
Fang Li
Xing-Huai Sun
Xiong-Li Yang
Zhongfeng Wang

Keywords

Abstract

Endocannabinoid signaling system is involved in regulating multiple neuronal functions in the central nervous system by activating G-protein coupled cannabinoid CB1 and CB2 receptors (CB1Rs and CB2Rs). Growing evidence has shown that CB1Rs and CB2Rs are extensively expressed in retinal ganglion cells (RGCs). Here, modulation of L- and T-types Ca2+ channels by activating CB1Rs and CB2Rs in RGCs was investigated. Triple immunofluorescent staining showed that L-type subunit CaV1.2 was co-localized with T-type subunits (CaV3.1, CaV3.2 and CaV3.3) in rat RGCs. In acutely isolated rat RGCs, the CB1R agonist WIN55212-2 suppressed both peak and steady-state Ca2+ currents in a dose-dependent manner, with IC50 being 9.6 μM and 8.4 μM, respectively. It was further shown that activation of CB1Rs by WIN55212-2 or ACEA, another CB1R agonist, significantly suppressed both L- and T-type Ca2+ currents, and shifted inactivation curve of T-type one toward hyperpolarization direction. While the effect on L-type Ca2+ channels was mediated by intracellular cAMP/protein kinase A (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways, only CaMKII signaling pathway was involved in the effect on T-type Ca2+ channels. Furthermore, CB65 and HU308, two specific CB2R agonists, significantly suppressed T-type Ca2+ channels, which was mediated by intracellular cAMP/PKA and CaMKII signaling pathways, but had no effect on L-type channels. These results imply that endogenous cannabinoids may modulate the excitability and the output of RGCs by differentially suppressing the activity of L- and T-type Ca2+ channels through activation of CB1Rs and CB2Rs. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge