English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacology Biochemistry and Behavior 2011-Oct

Carbamazepine inhibits distinct chemoconvulsant-induced seizure-like activity in Dugesia tigrina.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Latha Ramakrishnan
Cassie Desaer

Keywords

Abstract

Planaria, non-parasitic flatworms, were recently shown to be a simple yet sensitive model for investigating the pharmacology of convulsants and anticonvulsants. The present findings show that three distinct chemoconvulsants, (-)-nicotine, picrotoxin, and N-methyl-D-aspartate (NMDA), induce dose-dependent seizure-like paroxysms in the planarian Dugesia tigrina. Carbamazepine and oxcarbazepine, iminodibenzyl derivatives, exhibit anticonvulsive effects mediated mainly through the inactivation of voltage-gated sodium channels. Apart from these primary molecular targets, both carbamazepine and oxcarbazepine are known to activate γ-aminobutyric acid type A (GABA(A)) receptors and inhibit NMDA activated glutamate receptors and neuronal nicotinic acetylcholine receptors (nAChRs). The present study shows that in D. tigrina both carbamazepine and oxcarbazepine inhibit chemoconvulsant-induced seizure behaviors in a dose-dependent manner. Carbamazepine (100 μM) decreased by ~65% the cumulative mean planarian seizure-like activity (pSLA) observed in the presence of (-)-nicotine (10 μM), picrotoxin (5mM), or NMDA (3mM), whereas oxcarbazepine (1 μM) decreased by 45% the cumulative mean pSLA induced by (-)-nicotine (10μM). The results demonstrate, for the first time, the anti-seizure pharmacology of carbamazepine and oxcarbazepine in an invertebrate seizure model.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge