English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cryobiology 2006-Apr

Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D P Livingston
R Premakumar
S P Tallury

Keywords

Abstract

Carbohydrates have long been recognized as an important aspect of freezing tolerance in plants but the association between these two factors is often ambiguous. To help clarify the relationship, the allocation of carbohydrates between specific tissues within the over wintering organ (crown) of winter cereals was measured. A winter-hardy and non-winter-hardy oat (Avena sativa L.), and a rye (Secale cereale L.) cultivar were grown and frozen under controlled conditions. Crown tissue was fractionated into an upper portion, called the apical region, and a lower portion, called the lower crown. These tissues were ground in liquid N and extracted with water. Extracts were analyzed by HPLC for the simple sugars, sucrose, glucose, fructose, and for fructan of various size classes. After 3 weeks of cold acclimation at 3 degrees C, carbohydrates accounted for approximately 40% of the dry weight of oats and 60% of the dry weight of rye. The apical region, which is the tissue within the crown that acclimates to the greatest extent, was generally 10% higher in total carbohydrates than the lower crown. During a mild freeze, various carbohydrates were allocated differently between specific tissues in the three genotypes. When frozen, fructan generally decreased to a greater extent in the lower crown than in the apical region but sugars increased more in the apical region than in the lower crown. Results suggest that to understand how carbohydrates relate to freezing tolerance, regions of the crown that endure freezing stress differently should be compared.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge