English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2002-Jun

Cardiac effects of hypoxia in the neotenous tiger salamander Ambystoma tigrinum.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tom McKean
Guolian Li
Kong Wei

Keywords

Abstract

The aquatic form of the tiger salamander Ambystoma tigrinum lives in high-altitude ponds and is exposed to a hypoxic environment that may be either chronic or intermittent. In many animal species, exposure to hypoxia stimulates cardiac output and is followed by an increase in cardiac mass. The working hypothesis of the present study was that the hearts of these aquatic salamanders exposed to 10-14 days of 5 % oxygen in a laboratory setting would become larger and would differentially express proteins that would help confer tolerance to hypoxia. During exposure to hypoxia, cardiac output increased, as did hematocrit. Cardiac mass also increased, but mitotic figures were not detected in the cardiac myocytes of colchicine-injected animals. The mass increase was probably due to hypertrophy, although a very slow rate of hyperplasia cannot be ruled out. Representational difference analysis indicated that at least 14 mRNAs were expressed in hearts from the hypoxic animals that were not expressed in hearts from normoxic animals. The differentially expressed genes were cloned and sequenced and confirmed as coming from the ventricles of the hypoxic salamanders. Genes differentially expressed include mitochondrial genes and genes for elongation factor 2, a protein synthesis gene. The mechanical performance of buffer-perfused hearts isolated from normoxic and hypoxic animals did not differ. Acute responses to hypoxia were also measured. The rate of oxygen consumption of unanesthetized salamanders in metabolism chambers decreased when chamber oxygen concentration was reduced below 12 % oxygen. At a chamber oxygen concentration of 4-6 %, the rate of oxygen consumption of the salamanders was reduced to approximately one-third of the normoxic rate.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge