English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 1990

Cavities in molecular liquids and the theory of hydrophobic solubilities.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Pohorille
L R Pratt

Keywords

Abstract

Thermal configurational data on neat liquids are used to obtain the work of formation of hard spherical cavities of atomic size in six molecular solvents: n-hexane, n-dodecane, n-undecyl alcohol, chloroform, carbon tetrachloride, and water. These results are used to test a recent suggestion that the differences between nonaqueous solvents and liquid water in solvation of inert gases are not principally due to the hydrogen-bonded structure of liquid water but rather to the comparatively small size of the water molecule. The frequencies of occurrence of cavities in liquid water can be meaningfully distinguished from those in the organic solvents. Liquid water has a larger fractional free volume, but that free volume is distributed in smaller packets. With respect to cavity work, water is compared to a solvent of the same molecular density and composed of hard spheres of the same size as the water molecule. That comparison indicates that the hard-sphere liquid finds more ways to configure its free volume in order to accommodate an atomic solute of substantial size and thus, would be more favorable solvent for inert gases. The scaled particle model of inert gas solubility in liquid water predicts cavity works 20% below the numerical data for TIP4P water at 300 K and 1.0 g/cm3 for cavity radii near 2.0 angstroms. It is argued that the sign of this difference is just the sign that ought to be expected and that the magnitude of this difference measures structural differences between water and the directly comparable hard-sphere liquid. In conjunction with previous data, these results indicate that atomic sized cavities should be considered submacroscopic.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge