English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2006-Jan

Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide- and glutamate-induced injury in embryonic rat forebrain neuronal cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
P B Godkar
R K Gordon
A Ravindran
B P Doctor

Keywords

Abstract

Seed oil of Celastrus paniculatus Willd. (CP) has been reported to improve memory and the methanolic extract (ME) of CP was shown to exhibit free-radical-scavenging properties and anti-oxidant effects in human non-immortalized fibroblasts. In the present study, we have investigated the free-radical-scavenging capacity of CP seed oil (CPO) and two extracts, an ethanolic extract (EE) and a ME. CPO and EE showed dose-dependent, free-radical-scavenging capacity, but to a lesser degree than observed for ME. Oxidative stress involves the generation of free radicals and free radical scavenging is one of the mechanisms of neuroprotection. We therefore investigated the effects of CPO, ME, and EE for protection against hydrogen peroxide (H(2)O(2))- and glutamate-induced neurotoxicity in embryonic rat forebrain neuronal cells (FBNC). Pre-treatment of neuronal cells with CPO dose-dependently attenuated H(2)O(2)-induced neuronal death. Pre-treatment with ME and EE partially attenuated H(2)O(2)-induced toxicity, but these extracts were less effective than CPO for neuronal survival. In H(2)O(2)-treated cells, cellular superoxide dismutase (SOD) activity was unaffected, but catalase activity was decreased and levels of malondialdehyde (MDA) were increased. Pre-treatment with CPO, ME, or EE increased catalase activity and decreased MDA levels significantly. Also, CPO pre-treatment attenuated glutamate-induced neuronal death dose-dependently. The activity of cellular acetylcholinesterase (AChE) was not affected by CPO, ME, or EE, suggesting that the neuroprotection offered by CPO was independent of changes in AChE activity. Taken together, the data suggest that CPO, ME, and EE protected neuronal cells against H(2)O(2)-induced toxicity in part by virtue of their antioxidant properties, and their ability to induce antioxidant enzymes. However, CPO, which exhibited the least antioxidant properties, was the most effective in preventing neuronal cells against H(2)O(2)- and glutamate-induced toxicities. Thus, in addition to free-radical scavenging attributes, the mechanism of CP seed component (CP-C) neuroprotection must be elucidated.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge