English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2005-May

Cellular re-distribution of flavin-containing polyamine oxidase in differentiating root and mesocotyl of Zea mays L. seedlings.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alessandra Cona
Sandra Moreno
Francesco Cenci
Rodolfo Federico
Riccardo Angelini

Keywords

Abstract

Plant polyamine oxidases (PAOs; EC 1.5.3.11) are hydrogen peroxide-producing enzymes supposedly involved in cell-wall differentiation processes and defence responses. Maize (Zea mays L.) PAO (MPAO) is a 53 kDa secretory glycoprotein, abundant in primary and secondary cell walls of several tissues. Using biochemical, histochemical, ultrastructural and immunocytochemical techniques, the distribution and sub-cellular compartmentalisation of MPAO in the primary root and mesocotyl of seedlings at different maturation stages or after growth under varying light conditions were analysed. In apical root tissues, MPAO immunoreactivity was mainly detected in the cytoplasmic compartment, while a lower immunoreactivity was observed in the cell walls. In the more mature, basal part of the root, intense immunogold labelling was found in the primary and secondary walls of protoxylem precursors and vessels, while endodermal cells and living metaxylem precursors were immunopositive both in their walls and in their thin cytoplasmic compartments. A re-distribution of MPAO protein from the cytoplasm toward the primary and secondary walls was also recognised when immunoreactivity of basal root tissues from 3-day-old seedlings was compared with that detected in 11-day-old tissues. Accordingly, biochemical analyses revealed MPAO entrapment in the extracellular matrix of mature tissues. In the mesocotyl, an enrichment of MPAO immunolabelling in the cell wall of protoxylem, metaxylem and epidermal tissues, as a function of light exposure, was observed. Taken together, these data support the hypothesised role of PAOs in cell-wall maturation. Moreover, the relevant intraprotoplasmic MPAO localisation observed mainly in differentiating root tissues suggests an additional role in intracellular production of hydrogen peroxide.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge