English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioconjugate Chemistry 2012-Apr

Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Blanca Arnáiz
Olga Martínez-Ávila
Juan M Falcon-Perez
Soledad Penadés

Keywords

Abstract

Dendritic cells are the most potent of the professional antigen-presenting cells which display a pivotal role in the generation and regulation of adaptive immune responses against HIV-1. The migratory nature of dendritic cells is subverted by HIV-1 to gain access to lymph nodes where viral replication occurs. Dendritic cells express several calcium-dependent C-type lectin receptors including dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN), which constitute a major receptor for HIV-1. DC-SIGN recognizes N-linked high-mannose glycan clusters on HIV gp120 through multivalent and Ca(2+)-dependent protein-carbohydrate interactions. Therefore, mimicking the cluster presentation of oligomannosides from the virus surface is a strategic approach for carbohydrate-based microbicides. We have shown that gold nanoparticles (mannoGNPs) displaying multiple copies of structural motifs (di-, tri-, tetra-, penta-, or heptaoligomanosides) of the N-linked high-mannose glycan of viral gp120 are efficient inhibitors of DC-SIGN-mediated trans-infection of human T cells. We have now prepared the corresponding fluorescent-labeled glyconanoparticles (FITC-mannoGNPs) and studied their uptake by DC-SIGN expressing Burkitt lymphoma cells (Raji DC-SIGN cell line) and monocyte-derived immature dendritic cells (iDCs) by flow cytometry and confocal laser scanning microscopy. We demonstrate that the 1.8 nm oligomannoside coated nanoparticles are endocytosed following both DC-SIGN-dependent and -independent pathways and part of them colocalize with DC-SIGN in early endosomes. The blocking and sequestration of DC-SIGN receptors by mannoGNPs could explain their ability to inhibit HIV-1 trans-infection of human T cells in vitro.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge