English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2017-Apr

Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Clarice de Azevedo Souza
Shundai Li
Andrew Z Lin
Freddy Boutrot
Guido Grossmann
Cyril Zipfel
Shauna C Somerville

Keywords

Abstract

The plant cell wall, often the site of initial encounters between plants and their microbial pathogens, is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides as well as proteins. The concept of damage-associated molecular patterns (DAMPs) was proposed to describe plant elicitors like oligogalacturonides (OGs), which can be derived by the breakdown of the pectin homogalacturon by pectinases. OGs act via many of the same signaling steps as pathogen- or microbe-associated molecular patterns (PAMPs) to elicit defenses and provide protection against pathogens. Given both the complexity of the plant cell wall and the fact that many pathogens secrete a wide range of cell wall-degrading enzymes, we reasoned that the breakdown products of other cell wall polymers may be similarly biologically active as elicitors and may help to reinforce the perception of danger by plant cells. Our results indicate that oligomers derived from cellulose are perceived as signal molecules in Arabidopsis (Arabidopsis thaliana), triggering a signaling cascade that shares some similarities to responses to well-known elicitors such as chitooligomers and OGs. However, in contrast to other known PAMPs/DAMPs, cellobiose stimulates neither detectable reactive oxygen species production nor callose deposition. Confirming our idea that both PAMPs and DAMPs are likely to cooccur at infection sites, cotreatments of cellobiose with flg22 or chitooligomers led to synergistic increases in gene expression. Thus, the perception of cellulose-derived oligomers may participate in cell wall integrity surveillance and represents an additional layer of signaling following plant cell wall breakdown during cell wall remodeling or pathogen attack.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge